Fairlight Mixer Macro Language

V2.5 Specification

10/3/03

Introduction

Fairlight’s new Mixer is able to run macros on certain trigger conditions. Macros are defined by a simple set of instructions, the Fairlight Mixer Macro Language. Following the syntax of this language users are able to define macros for their own specific needs. This document gives a precise description of the Fairlight Mixer Macro Language’s syntax and rules.

General Concept

Fairlight Mixer Macro Language is a statement based language. Like in a computer program the macro is processed statement by statement. Execution direction is always forward, it even never jumps back. By means of conditional instructions it is possible to skip statement blocks, but only in the forward direction.

· Each line is one statement.

· Statements can only contain one instruction.

· Instructions are identified by keywords.

· One keyword defines an instruction.

· Keywords and all expressions are case insensitive.

For better readability instructions may be preceded by any number of blanks or tabs. This is especially useful for nested conditionals. To further increase the clarity also empty lines are allowed in the macro.

Comments

The keyword # marks a comment which is also an instruction (namely an instruction of not doing something). Consequently a comment requires it’s own line and must start with the # character. All characters in that line after the # are ignored by the macro system even though it may contain syntactical correct macro code. Furthermore, because a statement can only contain one instruction, instructions can’t be followed by a comment.

Variables

Each macro can use up to 32 variables. There are 32 local variables that can only be accessed by the macro itself and can’t be seen by others. They are allocated and initialized when a macro is fired and are deleted when the macro execution finishes. On the other hand there are 32 global variables that are shared by all the macros. These variables are allocated and initialized when the mixer system starts up and exist until the system shuts down or the macro system is reloaded. The global variables can be accessed by all the macros at any time and their intended use is to exchange information between macros that are called after another or in recursion.

There are two keywords used to access a variable, gvar for global and lvar for local variables. The keyword is followed by the index (1-32) of the variable.

Example:

lvar12 = 1

This statement assigns 1 as the new value of the local variable with the index 12.

For easier read- and maintainability it is possible to give both, global and local variables a unique name. This naming must be done in forward, thus all global variables must be declared at the beginning of the macro file before the first begin_macro statement, and local variables must be declared at the beginning of each macro after the begin_macro statement. The keywords for named variables are:

global_var name

local_var name
 name is a unique, up to 32 character long string that can contain a combination of the following letters or signs:

 A, B, C, … Z
 a, b, c, … z
 0, 1, 2, … 9
 ‘_’ (underscore)
Note: No blanks are allowed in a name. It is also important to mention that named variables still refer to the 32 global or local variables. Thus a named variable is just a symbolic placeholder of one of the indexed variables. A simple rule for this applies: The first global_var definition in the macro code corresponds to gvar32, the next to gvar31 and so on. The same rule applies to the local variables, the first local_var definition corresponds to lvar32, the next to lvar31 and so on.

Constants

Constants can be used as arguments within instructions. Constants have to be real numbers within the same range as variables. Negative numbers are prefixed by the “-“ character.

By default a constant number in the macro code is interpreted as a decimal number. Furthermore it is possible to use hexadecimal and binary format numbers which must be prefixed by special tags. The tag for hexadecimal is ‘$’ and ‘%’for binary.

Examples:

lvar1 = -10

This statement assigns minus 10 as the new value of the local variable with the index 1.

lvar1 = $FF

This statement assigns 255 as the new value of the local variable with the index 1.

lvar1 = %1010101

This statement assigns 85 as the new value of the local variable with the index 1.

Constants can also be specified as either a Fairlight ModuleType, ParameterType, or ControlID – pls see separate list.

Instructions

Envelopment

To mark the start and end of a macro the keywords begin_macro and end_macro are used.

begin_macro name
 name is a unique, up to 32 character long string that can contain a combination of the following letters or signs:

 A, B, C, … Z
 a, b, c, … z
 0, 1, 2, … 9
 ‘_’ (underscore)
Note: No blanks are allowed in a name.

end_macro

Note: Statements in between the end of a macro and the beginning of a new one may only contain spaces or syntactical correct comments.

Conditionals

To accomplish conditional execution of macro code the keywords if, elseif, else and endif are used.

if x operator y
 operator can be one of the following:

 >
bigger

 <
smaller

 >=
bigger or equals

 <=
smaller or equals

 ==
equals

 <>
unequals

 x and y can both be a variable. A constant for x or y is only allowed if the other one is a variable.

Followed by the if keyword is a condition that has to be tested at runtime. If this condition if fulfilled, the next block of statements will be executed. An if block ends with an elseif, else or endif instruction.

elseif x operator y
 operator can be one of the following:

 >
bigger

 <
smaller

 >=
bigger or equals

 <=
smaller or equals

 ==
equals

 <>
unequals

 x and y can both be a variable. A constant for x or y is only allowed if the other one is a variable.

The elseif condition is similar to if, but is only tested if a preceding if or elseif condition wasn’t fulfilled. The end of an elseif block is marked by a statement with the keyword else or endif.

else

The keyword else doesn’t need any additional condition. It only marks the start of a block of statements that have to be executed if the preceding if or elseif condition couldn’t be fulfilled. The end of an else block is marked by a statement with the keyword endif.

endif

The keyword endif marks the end either of a simple if, if/else or if/elseif/else block. No arguments are needed.

Note: Conditionals can be nested, i.e. the statements executed in an if or else block can contain other if/else constructs.

Loops

To accomplish looping of macro code the keywords while and endwhile are used.

while x operator y
 operator can be one of the following:

 >
bigger

 <
smaller

 >=
bigger or equals

 <=
smaller or equals

 ==
equals

 <>
unequals

 x and y can both be a variable. A constant for x or y is only allowed if the other one is a variable.

Followed by the while keyword is a condition that has to be tested at runtime. If this condition if fulfilled, the next block of statements will be executed. A while block ends with an endwhile instruction.

endwhile

The keyword endwhile marks the end of a simple while block. No arguments are needed.

Note: Loops can be nested, i.e. the statements executed in a while block can contain other while constructs.

Assignment

x = y operator z
 operator can be one of the following:

 +
plus

 -
minus

 *
multiply

 /
divide

 or
bitwise or

 and
bitwise and

 xor
bitwise exclusive or

 x must be a variable, i.e. the index within the range of 1 to 32.

 y and z can both be a variable. A constant for y or z is only allowed if the other one is a variable.

The keyword for an assignment is only the ‘=’ character, but by its nature an assignment always starts with a variable, namely the variable that a new value is assigned to. Assignments are typically used to calculate something and assign the result to a variable. Anyhow, it is also possible to omit the operator and just simply assign a variable with a constant or another variable, e.g. var1 = var2. The operator always must be enveloped by at least one space character to the left and the right, otherwise he won’t be recognized by the compiler.

Note: The results of divide operations are always rounded to the nearest integer value.

Read Mixer Parameter

z = read_par(w, x, y)

 z must be a variable, i.e. the index within the range of 1 to 32.

 w is the channel type and can either be a variable or constant.

 x is the channel index and can either be a variable or constant.

 y is the parameter id and can either be a variable or constant.

The read_par instruction is very similar to a macro by itself. It hides the user from the underlying mixer model by scanning the mixer for the specified parameter, reading its value and putting it into a variable.

Set Mixer Parameter

set_par(w, x, y, z)

 w is the channel type and can either be a variable or constant.

 x is the channel index and can either be a variable or constant.

 y is the parameter id and can either be a variable or constant.

 z is the new parameter value and can either be a variable or constant.

The set_par instruction is very similar to read_par. Again, it hides the user from the ugliness of the underlying mixer model and serves to set a mixer parameter to a specified value.

Call Other Macro

call_other_macro(name)

 name is the name of the other macro to be called. For naming conventions see the begin_macro instruction

The purpose of this instruction is pretty obvious. But ATTENTION should be drawn to the following fact: Incautious use of the call_other_macro instruction can lead to recursion, i.e. macros mutually call each other over and over again, which could lead under bad conditions to system crashes. Therefore internal security mechanisms are implemented to avoid such problems. Thus there is a runtime limit of up to 20 possible calls of call_other_macro (this also includes nesting) during the execution of one macro. If this limit is reached the system breaks up execution of the macro and throws an error message. Apart from the user-defined macros, there are also system macros as follows:

 sys_debug for printing out the values of variables; these must be passed to the macro using pass.
 sys_midi for accessing MIDI hardware; the status byte and data bytes must be passed to the macro using pass.
 sys_time for returning (via lvar1) the time since the macro archive was read in (in milliseconds).
Send Control Message

send_ctrl_msg(x, y)

 x is the controler’s identification number and can be a variable or constant.

 y is the controler’s value and can be a variable or constant.

The send_ctrl_msg simulates user input by injecting control messages into the system. E.g. when the user moves a fader a control message is sent to the system stating the control identification number of the fader and the value of the current fader position. By means of the send_ctrl_msg command it is possible to inject such messages into the system via a macro.

Pass

pass x

 x is a variable or constant.

The pass instruction allows variables to be passed by value to another macro. Up to four variables can be passed in this way, needing four pass instruction to be defined. More than four pass instructions before a call_other_macro instruction are ignored.

Return

return x

 x is a variable or constant.

The return instruction allows variables to be returned from another macro. If more than one return instruction is present, only the latest one is used. The return value is present in lvar1 in the calling macro.

